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ana ftecture for obJect modeling and recognition for an auto-
nomous land veh‘fcle/élxamples of objects of interest mclude terrain features.
fields. roads. horizon features. :rees. etc. The architecture is organized around =
set of data bases for generic objec: models and perceptuai structures. iemporary
memory for the instantiation of object and relational aypotheses. and a ‘ong term

memory for storing stable hypotheses that are affixad to :he terrain represeata-

tion. Multiple inference processes operate over -hese databases. We~descrive
these particular components: the perceptual structure database. the grouping
processes *hat operate over his, sciemas. and the long term ‘errain database.
\Lew a processing example that matches predictions {rom :he long
term terrain mocel o imagery. ex:iracis significant perceptual structures for con-
sideration as potential landmarks. and extracts a relationai structure -0 updaze
the long :erm terrain databases ., oL L~

2. INTRODUCTION

Terrain and object mocdes for automomous lazd velicies fALVs are
required lor a wide range of app.ications iacluding -oute aad :actical pianairg.
iocation ,ermcat on hrown <he recogzition of 'e"r:un features and obDjects. 1ac¢
acqu.r'ng aew nformation about the eavironment as it iz 2xplored. The foilcw-
ing iists important criteria Jor terrzin and object moce:ing :aoaoumes.

Desc-iptive _Adequacv: The modeiing ‘eczaigue :houid Dde C"Dab'e 3!
describing tne objects and situations ‘n :he environment zecessary Tor tie vehRicle
t0 fuaczion. This inciuces -epresenting aaturai as weil 2s man-made objects. It
snpould de a consistent sepresentation -hat supports moduiar system deveiopmen:
anc uniform inference procedures tha: canp operate over diferent types of odjects
at diferent ‘evels of Jderail. "U-iform shape. oDject subpart and surface atiritute
afixmesnts ire zecessary T0 1o tals.

Recomition \u'eq 1acy: Muea of the activiiy of an ALY s concerneg Wil
deter: “.n ag wnere t s and wha: ’s around :t. Tersain models =“oum e mazi-
si.ac.e or DZ L ieLilr-lised 1DTERTiLezd Ll overnad L3,
controiling recogaition of‘me<si": This ‘nvowves the Jormation of fenera: sred
tions of zenscr derived features Trom the terrain mocel. Iuca odred! ictions ‘-v:l.
oiten de 1acertain and quaiitative due L0 lncompiete pricr xnowleuge of tle ter-
=ain.
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Hazcling Uncerzainry: The 2xistence and =xact =2avironmentai ocaillon 3!
objects wiil orften 20t De Xpowrn wita compiete certainty. Locations will olten ze
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consistent terrain map. This is true. for instance, when the sensor displacement
parameters are not well determined. It is necessary to represent this uncertainty
explicitly in the terrain model so incrementally acquired information can be used
for disambiguation.

.

Learning: A vehicle will learn about the environment as it moves through
it.  Associating new information with the terrain representation should be
straightforward. This is difficult to do. for example, by changing values in a raw
elevation array. Types of information to be affixed to the terrain representation
include newly discovered objects. details of expected objects, and the processing
used in object recognition.

Fusion of_Information: The ALV must build a consistent environmental
model over time from different sensors. As an object is approached. its image"
appearance and scale will change considerably. vet it has to be recognized as the
same object. with newly acquired information associated with the unique instance
of the zeneral object type. In a typical situation. a distant dark terrain paich
will be partially recognized based upon distinctive visual characteristics. but may
be either a building or a road segment. As it is approached. its image appearance
changes considerabiv. making disambiguation possible. This requires :he
representation of multiple hypotheses. each formated with respect to the proper-
ties of the potential world objects. The structure of the object description should
direct the accumulation of information.

A further consideration in developing and evaluating terrain modeling caza-
bilities is that there is not a singie ALV. Instead. there are a wide range of auto-
somous vehicles. incexed by a diverse range of active and passive sensors ind
assumptions about 2 priori data. There is a continuum from systems havizg a
compiete initiai modei of the terrain and perfect sensors to those with no a priori
modei. and highly imperfect sensors. For example. a robot with no a priori data
and eoniv an unstabilized optical sensor will probably model the environmen: in
terms of a sequence of views reiated by landmarks and distinct visual evenrs
embedded in a representation that is more topological than metric. An ALV
solely dependent on optical imagery will have to deal with the huge variability in
-he appearance of objects. Experience has shown :hat even road surfaces have
aighly variable visual characteristics. Alternatively. a few pieces of highly pre-
selected visual nformation can serve to verify predictions from a reliable and
detaljed -errain mocel and precise position and range sensors.

We cajl a zeneral object model a schema. A schema can represent per-
ceived. dut unrecogaized. visual events. as weil as recognized objects and heir
relationsaips in =avironmental scenes. The architectural design ‘s ‘ocused about
the representation. ‘nstantiation. and inference over schemas developed by :the
ALV as 't moves "hrough the environment. 3chemas are related to similar :on-
septs “ound in Hanson et.ai. - 78 and Ohta - 30. The short term rermain
TeDrErelTAT.00n I0L 3 2f 3Cnheria It antiziiens tnal tedresent acriml.ated ter-

ceptuat evidence ‘or objects as attributes and relations that are hypothesized

O5;ect mode:s are ‘1sed "o organize perceptual processing dy integra:ing
cescriptive representations witd recognition and segmentation controi. One
aspect of this is the use of diferent tvpes of attribuves and inheritance relations
Setweern zeneric schemas or -epresentation in 1S-A and PART-OF izierarchies. A
Darcicylar abject a:cribute reiates three Jdimensional world properties of an oblect
ind sensor depencent view ‘nlormation. either by a set of gZerneric views or
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viewing procedures. These viewing attributes are also inherited and modified
according to different object types. In many systems, objects are treated as lists
of attributes that zre matched against extracted image features. Here they are
treated as specifying an active control process that directs image segmentation by
specifying grouping procedures to extract and organize image structures.

Another critical asmect of the architecture is the various types of spatial,
localization relations that deal with uncertainty and learning by associating
different tyvpes of perceptually derived information with terrain models. For
example. local (multi-sensor) viewframes affix sets of schemas and un-recognized
perceptual structures into local “robot’s-eye’’ views of an ALV's environment.
Path-affixments between local viewframes support fusion of informatinn in time
without necessarily corresponding to locations in an a priori grid.

This effort has developed an architecture for terrain and object recognition
compatibie with the wide range of potential sensor configurations and the
different qualities of a priori data.

There has been work in artificial intelligence, computer vision. and graphics
that satisfy the individual requirements for object modeling capabilities, but little
has been done to integrate them. To date, there is no vision system that can
interpret general natural scenes. although some can deal with restricted environ-
ments Hanson et.al. - 78 while other systems are restricted to artificial objects
and environments. Brooks’ Brooks - 34 representation based on generalized
cvlinders meets. or could be extended to deal with, many of these functions. [t
has well defined shape attribute inheritance between a set of progressively more
complex object models. and affixment relations that could be generalized to han-
dle nnecertainty. [t can aiso be used to generate constraints on image features
from oblect models. Nonetheless, the system buiit around this representation has
had limized success beyvond dealing with essentiaily orthographic views of
geometrically well defined man-made objects. This appears to be partially
because the constraints on image structures generated {rom the abstract instances
of object modeis are too general to gzenerate initial correspondences detween
modeis and mage structures. Brook's system aiso used an impoverished set of
image descriptions, and the object models could not direct the segmentation pro-
cess direct!v during their instantiation. The majority of work in terrain moceiing
deais with how weil a representation can reaiistically model three dimensional
terrain. but 2ot Jow it ‘s used for recognition. The simplicity of 2 mocel that is
described by a few parameters is not usefui ‘or recognition unless it can direct
constrained searches against image data. For example. Pentland's Pentland - 33
use of [racta.s satisfies aspec's of descriptive acequacy for naturai terrain. dSut has
Seen less e2fective for recogaiticn. Kulpers Kuipers - 32 has produced 2n
interesti: errain modei for learning and 1ancling uncertainty. but it s non
visuai. Re 1ted "o this 's Kuan's Kuian - 34 oblect based terrain representation
‘or olanr’ay that ‘s organized in terms of cistiner. modifiable objects. but s also
TOT 2380¢.ated Will sensor lerived Drocessing resuils.

3. ARCHITECTURE OVERVIEW

The system architecture -onsists of :everal databases and Iaference
processes. Thre infererce processes transform :he databases, sreatipg acditionai
data sirictures, and moaifvinz the oxisting ones. The -asx interface ceuses
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attention in system processing and monitors progress toward system task goals.
This high level architecture is depicted in Figure 1. The boxes with square
corners in this figure represent databases, the ellipses represent inference
processes, and arrows indicate dataflow.

3.1 SYSTEM DATABASES

At the highest level there are three databases. These are the short term
memory (STM), long term memory (LTM), and generic models.

The STM acts as a dynamic scratchpad for the vision system. It has two
sub-areas, a perceptual structures database (PSDB) and a hypothesis space. The
PSDB includes incoming imagery from sensors, immediate results of extracting
image structures such as curves, regions and surfaces, spatial temporal groupings
of these structures. and resuits of inferring 3D information.

The hypotheses space contains statements about objects and terrain in the
world. A hypothesis is represented as an instantiated schema. The schema
points -0 the various perceptual structures in the PSDB that provide evidence
that the object represented by the schema (such as a terrain patch. road, tree,
ete.} exists in the world. Other types of hypotheses include grids. viewfraines,
and viewpaths. Grids are a special type of terrain representation that contain
elevation information and are derived from range data or successive depth maps
from rmotion stereo. Viewpaths. as partially ordered sequences of viewframes.
give space time relationships between hypotheses. Viewframes are sets of
hyvpotheses that correspond zo what can be seen from a localized position. A
hypothesis with no associated perceptual structures is a prediction. As structures
and locaiization are incrementally added :o a hypothesis. it progresses on the con-
sinuum from predicted to secognized. Hypotheses that have enough evidexce
associated with them o be cornsidered recognized and stable. are moved to :h
LTM.
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The LTM stores a priori terrain representations. the long term terrain data-
base, and hypotheses with enough associated evidence to be considered visually
stable. A priori data concerning elevation and terrain type information, as well
as knowledge of specific landmarks are stored in the LTM. A viewframe.
representing a certain location in the world is stored in the LTM if the evidence
associated with it could be re-used to recognize the local environment if it was
re-encountered. Consistency of one hypothesis with another is not required for
storage in the LTM.

The model space stores generic object models. the inheritance relations of
the (model) schema network. and a set of image structure grouping processes and
rules for evaluating image structure interestingness. Generic models are used
dynamically to instantiate and guide search processes to associate evidence to an
object instance. Inheritance relations are used by various schema inference pro-
cedures to propagate structures, attributes and relations between object instan-
tiations. For instance. the generic two-lane-road schema has an ‘‘IS-A’" relation-
ship to the generic road schema. It follows, based on the inheritance models, that
an instantiation of the two-lane-road schema will inherit the more general charac-
teristics of the generic road schema that in turn inherits the more general charac-
teristics of a terrain patch. Unlike the STM and LTM. the model space is not
modified by inference processes.

3.2 INFERENCE PROCESSES

At the highest level. there are five different sorts of inference processes in
the vision system. These are perceptual inference. location inference. object
instantiation, LTM/STM instantiation, and the task interface.

The PSDB is initialized with the output of standard muliti-resolution image
processing operations for smoothing, edge extraction. flow field cdeterminatioz.
etc. Much subtler inference is required for grouping processes that produce coa-
nected curves, textures, surfaces. and temporal matches between image struc-
tures. These grouping operations are typicaily model zuided. There are generic
modeis ‘which may be task dependent) of what constitutes “interestingness’™ of
an image structure.

The hypothesis inference processes produce tasks for :he perceptuaj
processes. These may be satised by simple queries over the PSDB such as —9zd
all long lines in this region of image”. where “long”. "line” and "‘region” are sui-
ably interpreted. Queries can >e more complex. requiring, for instance, temporai
stabiiity, such as ~8ad -il homogeneous green texture regions that are matcled
ii.e.. remain in the Zeid of view) over at least two seconds of imagery”., where.
again. quaiitative descriptors are rigorousiy defined. Alternatively. the requested
perceptual struetures may be dvnamically extracted. In +his case, a history of *ze
orocessing atlempts and resusts are malintaipec. [ osimilar requests are mo:a
'ater. such as f we were %0 view the same environment ‘rom a ditferent perspec-
*ive. ‘hese processing histories could be used to recail a processing sequence '2at
produced successiul results.

[

Location processes inciude a number of ditferent modes of spatial location
representat.on and inference. ‘While exact location information is ised when it'is
available. a key concept is :he quaiitative representation of relative locatioa.
This 's findamental. because the problem of acaquiring terrain Xnowledge from
moving sensors invoives handling perceptual information tha: arises from
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multiple coordinate systems that are transforming in time. The basic approach
to location inference is to represent the location of world objects in a qualitative
manner that does not require the full knowledge of continuous transformations of
sensor coordinates relative to the vehicle the sensors are mounted on. or of
transformations of vehicle coordinates relative to the terrain.

The main structures involved in location inference are viewframes,
viewpaths, and grids. Viewframes represent both metric location information
about world objects derived from range sensors and view-based location informa-
tion about the directions in which objects are found derived from passive sensor
data.

Generic schemas are models of world objects that include information and
procedures on how to predict and match the object models in the available sensor
data. Besides representing 3D geometric constraints, 2D-3D sensor view appear-
ance including effects of change in resolution and environmental effects such as
season, weather, etc., schemas also indicate contextual relationships with other
objects, type and spatial constraints. similarity and conflict relations, spatial
localization. and appearance in viewframes.

Object schema instantiation may occur by model-driven prediction from a
priori knowledge, or directly from another instantiation and a PART-OF relation.
The other instantiation process may also occur by matching a distinctive percep-
tual structure to a schema appearance instance. This sort of ‘‘triggering” is more
common in situations where there is little a priori information to guide predic-
tion. Object instantiations generate queries to the PSDB grouping process in
order to complete matching.

A key idea in object instantiation processing is inference over the model
schema network hierarchies. Direct representation and inference over a large
enough body of world objects to accomplish outdoor terrain understanding
requires very large memory and proportionately lengthy inference procedures over
that memory space. Hierarchical representation makes a significant reduction in
storage requirements: furthermore. it lends itself naturally to matcaing schema ‘o
world objects at multiple levels of abstraction. thus speeding the inference pro-
cess. Two basic hierarchies are the [S-A and PART-OF trees.

[S-A hierarchies represent the refinement of object classification. Figure 2
shows part of an [S-A hierarchy for terrain representation. The .evel of
rerrestrial-object tells us that we will not see evidence of any schema instance
Selow this node as perceptual structures surrounded by sky. At the level of
errain-patch we pick up the geomertric kxnowledge of adherence to the ground
piane. while ‘nformation stored at :he level of a road schema constrains the boun-
daries of a terrain patch to be locaily iinear {with other constraints). Types
heneath road add critical appearance constraints in color and texture. while the
iza. reZnement .eve: ‘n e [3-A ilerarchy. the zumber of 'anes. Turthes on-
strains size parameters inherited ‘rom the road schema.

PART-OF hierarchies represent the decomposition of world objec’s into
comporneats, each of which is. itself. another world object. Figure 3 shows a
PART-OF alerarchy decomposition for a generic 2-lane-road. PART-OF hiierar-
chies contain relative geometric information that is useful in prediction and
iearcn.
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Figure 2: IS-A Hierarchy Figure 3: Part of Hierarchy

As object instantiation inference reasons up and down schema network
hierarchies, incrementally matching perceptual structures and other data to
instances of object appearance in the world. a history mechanism records the
inference processing steps. parameters and results. This dynamiec data structure
is called the schema instantiation structure. One important asperct of this strue-
ture is that it can used to extract the inference and processing sequence(s) that
worked earlier to see the same object. or ones that are similar. This accounts for
the fact that distinctiveness in image appearance is an idiosyneratic process that
depends upon many factors which are difficuit to model and control, such as
current motion, wind. varying outdoor illumination. etc.

4. PERCEPTUAL PROCESSING AND THE PSDB

Perceptual processing is concerned with organizing images into meaningful
chunks. The definition of “‘meaningful” and the development of explicit criteria
to evaluate segmentation techniques involves. from a data-driven perspective,
that the chunks have characterizing properties. such as regularity, connectedness,
and not tending to fragment the image. From a model-driven point of view, seg-
mentation appropriateness corresponds to the extent to which the pierzs can be
matched to structures and predictions derived {rom object maodels. T rom either
perspective, a basic requirement s :that image segmentation procedures fnd
significant image structures, independent of world semantics. in order to initialize
and cue model matching. This allows for the extraction of world events such as
surfaces. houndaries. and ‘nteresting satterns ‘ndevendent of incerstanding per-
ceptions in the context of a particuiar object. These. in turn. are useful abstrac-
rions ‘rom image information to match against object models or describe “he
characteristics of novel objects.

The Perceptual Structure Data Base {PSDB), conceptualized in Figire 4,
contains several different types of information. These are classified as images.
perceptual objects. and groups. [mages are the arrays of aumbers obtained {rom
the different sensors and the resuits of low level image processing (such 1s con-
tour extraction and region zrowing routines} that produce such arrays. [t s
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difficult for the symbolic relational representations used for object models. such
as schemas, and the processing rules in computer vision systems, to work directly
with an array of numbers. Therefore, there are many spatially-tagged, symbolic
representations used in image understanding systems that describe extracted
image structures such as the primal sketch Marr - 82, the RSV structure of the
VISIONS system Hanson et.al. - 78, and the patchery data structure of Ohta
Ohta - 80.. We found it useful to build such a representation around a set of
basic perceptual objects corresponding to peini> curves, regions, surfaces, and
volumes.

Groupings are recursively defined to be a related set of such objects. The
relation may be exactly determined, as in representing which edges are directly
adjacent to a region, or they may require a grouping procedure to determine the
set of objects that satisfy the relationship. Groupings can occur over space, e.g.,
linking texture elements under some shape criteria such as compactness and den-
sity, or over time, as in associating instances of perceptual structures in succes-
sive images. We stretch the concept a bit, so that groupings aiso refer to general
non-image registered perceptual information, such as histograms.

4.1 INITIALIZATION OF THE PSDB

Whenever new sensor data is obtained, a default set of operations are per-
formed to initialize the PSDB. Edges are extracted at rmultiple spatial frequen-
cies and decomposed into linear subsegments. The edges are extracted into dis-
tinct connected curves, and general attributes such as average intensity, contrast.
and variance are associated with them. Similar processing is performed for
regions extractions. Histograms are computed with respect to a wide range of
object based and image based characteristics in a pyramid iike structure. These
default operations are used to initialize bottom-up grouping processes and schema
instantiations. These, in turn, determine significant structures using beuristic
interestingness rules :o prioritize the structures for the application of grouping
processes or object instantiations.

4.2 IMAGES

Images are the data arrays derived {rom the optical and laser range sensors
and the results of image processing routines for operations including histogram-
based segmentation. different edge operators, optic flow feld computations, and
so forth. Associated with images are severai attributes for time of acquisition,
relevant sensor parameters. etc. Processing history is maintained in the process-
ing relationship structure that Xeeps track of the processing history of ail objects
in the PSDB.

4.3 PERCEPTUAL OBJECTS

Points. curves, regions. surfaces. and volumes are basic types of perceptual
structures that are acressible to object instantiations and grouping processes. An
example instance of a curve structure is shown in Figure 5. This dgure shows
many common representational characteristics of perceptuai objects. Tzere are
default attributes associated with particular objects, such as endpoints. 'ength
and positions for a curve. There is aiso an associated attribute-list mechanism
for incorporating more general properties with an object. This iist is accessible
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Figure 4: Perceptual Structure Data Base (PSDB)

Figure 3: Curve Example
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Figure 6: Parallel Grouping

by keywords acd a general query mechanism using methods specific to the partic-
ular associated attribute. The associated attributes in the example are showa in
capital letters. There are many types of attributes that can be consistently asso-
ciated with a curve using this mechanism.

A useful representation for performing geometric operations and queries
over objects is the OBJECT LABEL-GRID (or GRID: in the exampie curve.
The number 8 indicates the index of this structure). This is an image where each
pixel contains a vector of pointers back to the set of perceptual objects and
groups which occupy that position. This allows geometric operations to be per-
formed directly on the grid. Filtering operations can be applied to the OBJECT
LABEL GRID to restrict processing based upon attributes associated with
objects. Various types of masks can be associated with objects to reflect a direc-
tional or uniform neighborhood to determine object relationships in the OBJECT
LABEL GRID.
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4.4 GROUPS

A group is a set of related perceptual objects. The relation can be deter-
mined directly by a query over an object and those surrounding it, as in finding
the set of curves within some distance of a given region. Alternatively, it may
require a search process o find the set of objects meeting some, potentially com-
plex, criteria. For example, an ordered set of curves can be grouped together
using thresholds on allowable changes in the average contrast and orientation of
successive elements. By expressing the grouping process as a search over a state
space of potential groups, each group becomes a potential hypothesis in the
PSDB. Groups can also reflect temporal relationships; this occurs in matching
structures in successive images. A relational grouping procedure is shown in Fig-
ure 8 for the determination of nearby parallel lines with opposite contrast direc-
tions. This is done for a linear segment by first extracting nearby neighbors
using a narrow mask oriented perpendicular from the segment at its mid-point.
The intersection of this mask with points in the label grid are determined, and
then each candidate is evaluated by checking if it is within allowable thresholds
for length, contrast, and orientation. It is then ordered with respect to the smal-
lest magnitude of the difference vector computed from the average gradients.
The grouping processes can either produce the best candidate as a potential
grouping, or some set of them. ;

Two different types of grouping processes have been developed: measure-
based and interestingness-based. The measure based grouper is a generalization
of established edge and region linkers Martelli - 78:. It uses a measure consisting
of:

.) some value to be optimized, such as lengtk, minimal curvature, com-
pactaess, nr a composite scalar value

2) local constraints on allowabie changes in attributes

3) giobal thresholds oa attributes

The measure and associated constraints are optimized by a best first search
returning several ordered candidate groups. The measure to be used can be asso-
ciated with a prediction from an object model for substance or shape characteris-
tics. The measure to be optimized can also be determined directly from initially
extracted objects by selecting those that are extreme in some attribute or are
correiated with the attributes of surrounding objects to derive a measure 0 be
optimized.

The measure based grouper is currently being generalized into one based on
interestingness. it invoives the dasic prccessing .oop shown in rigure 7. imiady.
basic perceptual objects including curves, regions. junctions and their associated
attributes are extracted using conventional techniques. Extracted objecis are
represented in label grids to express spatial neighborhood operations over the
objects. A uniform neighborhood is established for each object, and directed rela-
tions are formed with the adjacent objects in each neighborhood. These relations
are represented in a small number of types of match relationships that contain
descriptions of the correlation of attributes, subcomponent matching, and compo-
site properties.
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Selected attributes of the extracted perceptual objects and the match strue-
‘ tures are then sorted into lists with pointers back to the associated objects.
These lists are for attributes such as size, average feature values, variance of
feature values, compactness, the extent of correlation between the components
and attributes of different structures, and the number of groups an object is
involved in. These different rankings are then combined using a selection criteria
to choose the set of interesting perceptual objects and relationships. The selec-
tion criteria sets the required position in different subsets of the sorted attribute
lists. An example is to find 100 largest objects in the top 10 of any of the attri-
bute correlation lists. The selection criteria is modifiable during processing and is
meant to reflect the influence of model-based predictions.

Interestingness is used to focus the application of grouping rules to a
selected set of objects and relations between objects indicated in match strue-
tures. The grouping rules then combine perceptual objects to form new percep-
tual objects, or groups, based upon the type of relation between the objects.
Neighborhoods are established with respect to these derived groups to form new
relationships. These in turn are sorted in the attribute lists with respect to the
previously extracted perceptual objects. In addition to the relations established
in uniform neighborhoods, for some groups. non-uniform relations are also esta-
blished. Processing can continue indefinitely as less and less interesting relations
become candidates for the application of grouping rules. Explicit criteria are
needed to stop processing; e.g., we can limit processing time, determine when
there is a uniform covering of the image with extracted groups, or when struc-
tures belong to unique groups.

INTERESTINGNESS

AP 1 GROUPIEE MAES: i
. UATCH PRECOMOMCAE |
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Figure 7: Grouping Processing Flow Figure 3: Grouping Architecture
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These operations are performed by virtual processors called grouping nodes.
Grouping nodes are seen as covering regular and adjacent portions of an image
area (not necessarily of a single image, because there can be multiple images in a
motion sequence). The image area contains some portion of a label plane for
accessing the objects based upon their spatial dispositions as well as object-based
associated attributes. The grouping nodes are further organized in a hierarchical
pyramid shown in Figure 8. Each node is connected to its adjacent neighbors
and has a parent and descendants. The transfer of information between nodes at
different levels is based upon interestingness. Lower level processes send their
most interesting structures up the hierarchy. There are several effects of this.
One is that it allows a uniform processing to occur at different levels, so grouping
rules can be applied to objects at different levels of interestingness. It also allows
relztions between nonspatially adjacent structures to be handled in a uniform
architecture. It also partitions perceptual structures in a way that corresponds to
different levels of control in instantiation of object models.

Organizing segmentation in terms of grouping processes has many advan-
tages for a model based vision system. The grouping processes can be run
automatically from extracted significant structures based upon perceptually
significant, though non-semantic criteria. Thus, connected curves of slowly
changing orientation or compact, homogeneous regions can be extracted purely
on perceptual criteria. These image structures correspond to world structure and
events, and they are useful for initializing schema instantiations. They
correspond to the qualitative image predictions associated with more general
schemas. An inference process for compilation from an object model into group-
ing processes, allows model based vision to have a very active character quite
different from single-level attribute matching.

5. SCHEMAS

Sckemas represent hypotheses about objects in the world. The process of
schema instantiation creates an instance of a schema together with evidence ‘or
that schema. Eviaence consists of structures in the PSDB, a priori knowledge
stored in the LTM, predictions derived from location inference, and relations %o
already instantiated schema.

Table 1 shows the various slots and relationships in a generic scaema.
Although this data structure has a frame-like appearance, it is useful to view the
schema as a semantic net structure, with slots representing nodes in the net and
relationships representing arcs. Schema instantiation inference reasons {rom a
(partiaily) instantiated node, foilows arcs, and infers procedures to execute ‘rom
the sum of its acquired information in order to obtain more evidence to further
instantiate *he schema.

The schema network is a generic set of data structures that indicate the a
priori relationships between schemas. A key part of this network is the inperi-
tance hierarchies that indicate which descriptions and relationships can be inker-
ited from schema to schema. Inheritance hierarchies allow efficient matcaing of
objects in the worid against sensor evidence from progressively coarser ‘o iner
levels. As reasoning moves from coarser to finer levels of description in modei-
based schema instantiations, the schemas inherit descriptive bounds and add zew
descriptions, and aiso add constraints to inherited ones. For example, the system
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Table 1: Generic Schema Data Structure

may first recognize an object as a terrain patch (because it lies on the ground
plane). A road is a type of terrain patch (see Figure 1, that adds linear boundary
description, and constrains the visual image appearance of the terrain patch
schema in the color and texture descriptors. The two basie types of schema net-
work inheritance hierarchies are [S-A and PART-OF.

Below is a brief explanation of each of the slots and relationships in the
generic schema data structure. Schema type refers to the generic name of the
schema in the IS-A hierarchy. Schema name is the identification of the schema
instance, e.g., if the schema type is ‘‘road” then the schema name might be
“*highway 101°. The schema instantiation structure maintains the control history
of the schema recogmition inference processes for this schema.

The 3D description is an objeé¢t-centered view of the world object
sepresented by the schema. It inciudes its 3D geometry and shape description.
actual size, and inherent color and texture (as opposed to how its color and :ex-
ture might appear to a particuiar sensor). Note that this is the description that
matches the schema-object before looking at its structure refined into com-
ponents. For example. the 3D geometric description of a tree schema does 2ot
separate the canopy from the trunk, but gives a single enclosing volume as its
representation. The volumetric descriptions of the trunk and canopy appear as
the 3D descriptors on their schema further down the PART-OF hierarchy. Thus.
inferring down the PART-OF hierarchy corresponds to ‘ncreasing the resolution
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of the view of the object represented by the schemas.

The sensor views are descriptions of the stable or frequently occurring
appearances of the schema object in imagery. This description is intended to be
used for image appearance prediction, evidence accrual for instance recognition,
3D shape inference, and location inference. The reason for storing or runtime
generation of explicit (parametrized) image views is that the perceptual evidence
matches to these descriptions, not to the three dimensional ones.

The distinctive image appearance slot holds descriptions of perceptual
structurzs that are likely to occur bottom-up in the PSDB. They provide coarse
triggers for instantiating the schema object hypothesis without prediction.

The perceptual structure is the dynamically created PSDB query history
generated by the schema instantiation as it attempts to fill in evidence matching
the various schema slots and relations. The instantiator can re-use successful
branches of perceptual structures to improve its recognition speed as it continues
to view other instances of the same generic schema type.

Components are pointers to other schema that represent sub-parts of the
schema object. They are Aner resolution description of the schema, one level
down on the PART-OF hierarchy. The MUST-HAVE components are assumed
to be parts the represented object must have to exist, although the schema may
be instantiated without observing them all. Occasionally occurring components.
such as center-lines on roads, can be stored in the MAY-HAVE slot. Spatial rela-
tionships between compounents as they make up the schema object are listed at
this level also. Relationships can also be stored on a view dependent basis.
These relationships access the sensor-view dependent data in that slot. PART-
OF’'s point upward one ievel on the PART-OF hierarchy, indicating that this
schema is a component of another schema.

Classification points upward and downward one level on the IS-A hierarchy.
There may be more than one such pointer, which is to say that the IS-A Nierar-
chy may be partially ordered.

Contextual relationsnips indicate spatial/temporal consonance or disconso-
nance between groups of schema types, omitting those which are already indi-
cated in the PART-OF and IS-A hierarchies. Schema that ALWAYS or zever-
occur with the given one can be used strongly for belief or dis-belief in :he
schema instance and as focus of attention mechanisms within the instan:iation
process. SOMETIMES occurs with relationships that are used to store :he
spatial-temporal aspects of schemas relative appearance in the viewed eaviron-
ment.

CONFUSED-WITH and SIMILAR-TO relationsnips indicate schema :ha.
may be mistaken for the ziven one. but for different reasons. One schema may
5¢ confused with another Decause they share commox 2vidence Dieces. >u: Jor
w~aich there are sufficient 4esc'1ptors 1o disambiguate. Two schema are similar if
‘kere is sufficient ambiguity in their appearances, and therefore the available per
ceptual evidence, that :key may be indistinguishable without contextual reason-
ing. For e'(ample. tall grass may be confused with wheat from coarse shage inc
exture evidence, but c¢an often be disambiguated by color descriptors or iner
resolution examination of structure {because of wheat berries, for example) How-
ever. roads are similar to runways because thev cannot necessarily 2e dis-
‘inguished by their intrizsic appearance. no matter now detailed or accuraze ke
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descriptors and evidence. Contextual reasoning, e.g., the presence of aircraft oa
the runway, zlobal curvature of the road, etc. is required.

Locational information points at the various viewframes the schema appears
in and inferred 3D relationships with other world objects.

Recognition strategies are prioritization cues for the schema instantiation
processes that suggest inference chains likely to pay off to match this schema
instance against sensor evidence.

The recognition strategies slot in the schema data structure prioritizes infer-
ence approaches relevant to this schema. These approaches include search for
components, search for part of schema instance, search on weaker classification,
relations with other schema instances. and PSDB matching.

Search for COMPONENTS and search for PART-OF are both inferences
along the PART-OF hierarchy in different directions. The instantiator searches
the relevant slot to see if there are components to search for or another object of
which this schema is a component. If the COMPONENT or PART-OF scheruas
exist, they can be accessed to continue the inference. Otherwise, each causes an
instantiation of the missing schema 0 be generated as a prediction. Instantiation
control can be transferred at this point to the COMPONENT or PART-OF
schema. The schema inference process maintains its thread of reasoning relevant
to the schema in the schema instantiation structure slot.

8. LONG TERM TERRAIN DATABASE

The long term terrain database is part of LTM. [t stores the data neces-
sary for a mobile robot to perform +ision-based navigation and guidance. predic:
visrzl events, such as landmarks and horizon lines, and to update and refize
maps.

The long term terrain database contains a priori map data including
government terrain grids. elevation data, and schemas representing instances of
stable visual events recorded waile :raversing paths in the environment. The use
of a priori map and grid data :o predict percepts and to heip guide image seg-
mentation is shown in Section 5. The following presents a summary of a struc-
ture for spatial representation and inference that enables a robot to navigate and
guide itself through ‘he environment.

We drst define :he aotion of a geographic “‘place” in terms of data about
visible !andmarks. A place. as 1 point on the surface of the zround. is defined >¥
rhe landmarks and spatial reiationships between landmarks that can be observed
rom a dxed localion. More zezeraly. a piace can de Zedzed 15 a reglon lnospale,
‘n whici a ixed set of {andmarks ¢aa be observed rom anywhere ‘n the regioa.
and reiationships between them do 10t change in some appropriate qualitative
sense. Data about places s stored 'n structures cailed viewframes, boundaries
and orientation regions.

Viewframes provide a dednition of place in terms of relative angies and

angular error between landmarks. anc very coarse estimates of the absoiute range
of the landmarks from our point of sdservation. Viewframes allow the system o
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localize its position in space relative to observable local landmark coordinate sys-
tems. In performing a viewframe localization, observed or inferred data about
the approximate range to landmarks can be used. Errors in ranging and relative
angular separation between landmarks are smoothly accounted for. A priori map
data can also be incorporated. A viewframe is pictured in Figure 20.

A viewframe encodes the observable landmark information in a stationary
panorama. That is, we assume that the sensor platform is stationary long
enough for the sensor t~ pan up to 360 degrees, to tilt up to 90 degrees (or to use
an omni-directional sensor Cao et.al. - 86,), to recognize landmarks in its field of
view, or to buffer imagery and recognize landmarks while in motion.

A sensor-centered spherical coordinate system is established. It fixes an
orientation in azimuth and elevation, and takes the direction opposite the current
heading as the zero degree axis. Then two landmarks in front of the vehicle,
relative to the heading, will have an azimuth separation of less than 180 degrees.
If we assume that no two distinguished landmark points have the same elevation
coordinates (i.e.. no two distinguished points appear one directly above the other)
then a well-ordering of the landmarks in the azimuth direction can be generated.
We can speak of the landmarks as being '‘ordered from left to right’’. The rela-
tive solid angle between two distinguished landmark points is now well defined.

Under the above assumptions, the system can pan from left to right, recog-
nizing landmarks. L, . and storing the solid angles between landmarks in order,
denoting the angle between the i-th and j-th landmarks by Ang,,. The basic
viewframe data are these two ordered lists, (L ;,L »....) and (Ang,s,Ang,s,...). The
relative angular displacement between any two landmarks can be computed from
this basic list. In Levitt et.al. - 87 we show how to use this data to essentially
paramerrize all possible triangulations of our location reiative to a set of simul-
taneously visible landmarks. This localizes the robot's position in space relative
to a local landmark coordinate system.

Viewframes contain two basic dimensions of data: the relative angles
petween landmarks. and the estimated range (intervais) to the landmarks. I we
drop the range information, we are left with purely topological data. That is. it
is impossible. using only the relative angles between landmarks, and no range.
map or other metric data, to determine the reiative angles between tripies of
landmarks., or to construct parametric representations of our location with
respect to the landmarks. Nonetheless, there is topological localization informa-
tion present in :he ordinal sequence of landmarks: there is a sense in which we
cap compute differences between geographic regions. and observe which region we
are in.

The basic concept is o note that if we draw a lice between two {poi..l)
!andmarks. and project that iine onto the (pmsxblv not ﬂat) surface of the
zrouzd, ther :his line iivides <ie 2arth into two listinet regloms. I we :an
observe the landmarks. we can observe which side of this line we are on. The
“virtual boundary™ created by associating two observable landmarks together
thus divides space over the region in which both iandmarks are visible. We call
these landmark-pair-boundaries (LPB’s), and dernote :he LPB constructed {rom
the landmarks L, aad L, by LPB(L ,.L,}-

Roughly speaking, if we observe that landmark L | is on our left hand. and

iandmark L , is on our righ:. and the angie from L, o L, (left o right) s less
than 180 degrees, then we denote this side of, or equxvalentlv, this orientation of,
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the LPB by 'L, L,]. If we stand on the other side of the boundary, LPB(L ,,L ,),
“facing” the boundarv then L, will be on our left hand and L, on our right and
the angle between them less than 180 degrees, and we can denote this orientation
or side as (L, L] (left to right).

More rigorously, define:
orientation-of-LPB(L ,,L ,)

Lir®p <7
=sign(7-6p) = 0if B, ==
aif O, >

where ©,, is the relative azimuth angle between L, and L, measured in an arbi-
trary sensor-centered coordinate system. Here, an orientation of —1 corresponds
to the L, L, side of LPB(L,L,), -1 corresponds to the 'L, L, side of
LPB(L,.L ) and O corresponds to being on LPB(L ;,L,). It isa atraxghtfomard
to show that this definition of LPB orientation does not depend on the choice of
sensor-centered coordinate system.

LPB’s give rise to a topological division of the ground surface into observ-
able regions of localization, called orientation regions. Crossing boundaries
between orientation regions leads to a qualitative sense of path planning based on
perceptual information. The three levels of spatial representation given by map
or metric data, viewframes and orientation regions are pictured in Figure 9. A

Figure 9: Multipie-Leve's-of-3patial Representation
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natural environmental representation based on viewframes recorded while follow-
ing a path is given by two lists, one list of the ordered sequence of viewframes
collected on the path. and another of the set of landmarks observed on the path.
We call the viewframe list a viewpath. The landmark list acts as an index into
the viewpath, each landmark pointing at the observations of itseif in the
viewframes. For efficiency, the landmark list can be formed as a database that
can be accessed based on spatial and/or visual proximity. Visual proximity can
be observed, or computed from an underlying elevation grid and a model of sen-
sor and vision system resolution.

The first occurrence of a landmark points at the instantiated schema or per-
ceptual structure in the vision svstem database that was used to gather evidence
in the landmark recognition process. After that, all recognized re-occurrences of
this landmark point back at this initial instance. The same s true for the frst
occurrences and successful re-recognition of LPB’s and viewframes. This mechan-
ism allows multiple visual path representations, built at different times. to be
incrementaily integrated together as theyv are acquired by using a common land-
mark indexing pointer list.

We use an environmental represeptation for orientation-region reasoning
that is a list of oriented LPB’s encountered and crossed in the course of following
a path. We call such a list an orientation-path. As with viewpaths, there is an
associated landmark list that indexes into the orientation-path.

A dynamically acquirable environmental representation that merges the
representations for viewpaths and orientation-paths consists of an ordered list
interspersing viewframes. LPB crossings. and appearance and occlusion (or loss of
resolution) of landmarks. as well as recording the headings taken in the course of
following the path over which the environmenta!l map is being built. Thus, we
can integrate the representations required for view{rame and orientation region
based reasoning with heading and landmark informaticn to formulate an environ-
mental representation ‘hat supports hybrid strategies fer navigation and gui-
dance. The representation is formed at runtime and consists of multiple inter-
locking lists of sequential. time ordered. lists of visual events that include those
necessarv for the navigation and zuldance aigorithms presented in Levitt et.al. -
37,

7. PROCESSING EXAMPLE

The Joilowing processing °xampie demonsirates the behavior of some imple-
Tented system compornents. These incluce the lormat of predictions from :he
iorg term ‘errain model, the extraction of perceptually significant zroupings ‘rom
-te PIDB. how an ‘nstantiated schema ises Irouping processes and queries aver
tne PSDB. and ex’racling -eievant cues [of maxing viewlrame ioca.izations in ‘ae
lor.g “erm terrain representatiorn.
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. Army Engineer Topograpnic Laboratories (ETL!. The venricie posi-
road Is incicated dv the arrow 'n <he Jgure. From this, we are abie
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Figure 10: Terrain Data Figure 11: A Prior Terrain Type Classification
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cigure 12: Predicted Segmentation From Grid Data

and the terrain data. {the relevant sensor parameters were not available). Figure
11 shows the terrain and feature classification supplied with the a priori data.
These correspond :o sets of image overiays in register with the elevation data.
The road network is stored as a set of curve objects that is decomposed into
linear segments with supplied attributes, such as road materiali and width. Ter-
rain patches are extracted as regions from terrain type information and
parametric surface fits to the a priori elevation data.

Figure 12 shows how the grid registered terrain data is instantiated into
STM 0 form a predicted segmentation. The zrid data regions from connected
anaiysis correspond t0 schema .astances in the Long Term ‘errain memory. Esta-
blished surface display techniques are used to project the elevation with the asso-
ciated schema instances :o form a predicted view. [mage positions are then
labeled with :heir associated schema instances. Additionally, there are many
schema instances. ordered by depth. at the corresponding image locations. The
resuiting predicted segmentation is processed as an abstract image where criticai
perceptual events are determined by size, adjacencies across occlusion boundaries.
or :ypes cf terrain with high semantic contrast. such as water, fields. or maa-
made structures. The perceptual structures are merged together based upon
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distances and semantic type to yield predictions at different resolutions.

Figure 13 shows the predicted terrain patches for ihe vehicle positioned
with respect to the terrain in Figure 10. Figure 14 shows the predicted segmenta-
tion after filtering to pull out the horizon line and road, terrain discontinuities for
roads near the vehicle. This data is quite coarse (30m sampling), and image areas
in the foreground are highly composite containing instances of road 2nd the adja-
cent grassy Helds. Nonetheiess, the predicted segmentation yields a qualitative
description of predicted image features that is sufficient to initialize and direct
grouping processes to find corresponding image features and relationships. The
key characteristics of the predicted segmentation are that the vehicle is on a flat
plane, and that its field of view consists of road and grassy field terrain patches
with some mountains in the distance. Predictions cf the dirt road off to the right
and the intersection are made from the road-network and the elevation informa-
tion stored along with it. The predictions are in terms of constraints on region
adjaceacies across boundaries, and the shape and attributes, such as color con-
trasts, of the boundaries themselves. The horizon line constraints are that it will
tend to have smoothly changing orientation and be adjacent to a large homogene-
ous region (the sky). In general, the predicted features are described with con-
strained attributes determined from the visibility components of schemas.

Figures 13 and 16 show some of the contour related structures in the initiai-
ized PSDB. Figure 15 shows the edges extracted at one spatial resolution using
the Canny edge operator Canny - 83. We have found it useful not to appiy
noisé suppression o extracted :zegments in order to base fltering on structural
properties of the contours. including linear deviation and relationships to other
image structures. Different linear segment fits for this extracted edge images are
shown in Figure 186.

Figure 17 shows the results of zrouping processes applied to a set of
selected curves in Figure i2 with mulitiple associated attributes for orientation
and color contrasts. The grouping processes were constrained by the predicted
segmentation in Figure 14 using constraints on allowable color contrasts, changes
in linear segment orientation, and rough image position and extent. Multipie
groups are obtained for each predicted image event. Selection of one, or main-
taining multiple aiternative groups. is explicitly represented in the schema instan-
tiation structure. Here., groups were selected based upon length and uniformity
of composite attributes.

Figure 18 shows the results »f a road schema instantiation based upon
matches to extracted road boundar es in accounting for road surface properties
through PART-OF relations. Texture elements adiacent to the road boundary
which are consistent with a road surface. such as low contrast. parallel edges
corresponding to 'read marks. are used %o direct queries to instantiate potential
road area. Queries are aiso used to determine the presence of anomalous strue-
tures ‘2 the road such as aavthing which is high contrast or oriented perpendic:-
iar to the road uirection. 3Jucn structures require gisampiguation tarough instaa-
siation of another sche:na (it could be 1 road marking) cued by the anomaiy or
elevation estimates derived from motion displacements or range sensing.

Significant image structures near ke horizon line are particularly importaat
for landmark extraction. Figure 19 shows extracted interesting perceptual groups
near and above the horizon line. Figure 20 shows an extracted viewfraze
representing the relative visuai spatial relationships beiween some of the objects
extracted from this deid of view.
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Figure 13: Terrain Patches
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Figure 17: Contour Groupings
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Figure 18: Road Schema Instantiation Figure 19: Significant Perceptual Groups
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Figure 20: Viewframe Instance
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8. SUMMARY

The architecture we have developed, using terrain and road schemas with
implemented system components for perceptual processing and manipulating long -
term terrain data, has been successfully used in tasks for ALV navigation and
scene interpretation.
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